Copied to
clipboard

G = C325Q16order 144 = 24·32

2nd semidirect product of C32 and Q16 acting via Q16/C8=C2

metabelian, supersoluble, monomial

Aliases: C24.3S3, C6.9D12, C325Q16, C31Dic12, C12.48D6, C8.(C3⋊S3), (C3×C24).1C2, (C3×C6).24D4, C2.5(C12⋊S3), C324Q8.1C2, (C3×C12).34C22, C4.10(C2×C3⋊S3), SmallGroup(144,89)

Series: Derived Chief Lower central Upper central

C1C3×C12 — C325Q16
C1C3C32C3×C6C3×C12C324Q8 — C325Q16
C32C3×C6C3×C12 — C325Q16
C1C2C4C8

Generators and relations for C325Q16
 G = < a,b,c,d | a3=b3=c8=1, d2=c4, ab=ba, ac=ca, dad-1=a-1, bc=cb, dbd-1=b-1, dcd-1=c-1 >

Subgroups: 178 in 54 conjugacy classes, 27 normal (9 characteristic)
C1, C2, C3, C4, C4, C6, C8, Q8, C32, Dic3, C12, Q16, C3×C6, C24, Dic6, C3⋊Dic3, C3×C12, Dic12, C3×C24, C324Q8, C325Q16
Quotients: C1, C2, C22, S3, D4, D6, Q16, C3⋊S3, D12, C2×C3⋊S3, Dic12, C12⋊S3, C325Q16

Smallest permutation representation of C325Q16
Regular action on 144 points
Generators in S144
(1 121 82)(2 122 83)(3 123 84)(4 124 85)(5 125 86)(6 126 87)(7 127 88)(8 128 81)(9 49 28)(10 50 29)(11 51 30)(12 52 31)(13 53 32)(14 54 25)(15 55 26)(16 56 27)(17 59 95)(18 60 96)(19 61 89)(20 62 90)(21 63 91)(22 64 92)(23 57 93)(24 58 94)(33 44 139)(34 45 140)(35 46 141)(36 47 142)(37 48 143)(38 41 144)(39 42 137)(40 43 138)(65 131 118)(66 132 119)(67 133 120)(68 134 113)(69 135 114)(70 136 115)(71 129 116)(72 130 117)(73 98 105)(74 99 106)(75 100 107)(76 101 108)(77 102 109)(78 103 110)(79 104 111)(80 97 112)
(1 104 116)(2 97 117)(3 98 118)(4 99 119)(5 100 120)(6 101 113)(7 102 114)(8 103 115)(9 42 59)(10 43 60)(11 44 61)(12 45 62)(13 46 63)(14 47 64)(15 48 57)(16 41 58)(17 28 39)(18 29 40)(19 30 33)(20 31 34)(21 32 35)(22 25 36)(23 26 37)(24 27 38)(49 137 95)(50 138 96)(51 139 89)(52 140 90)(53 141 91)(54 142 92)(55 143 93)(56 144 94)(65 123 105)(66 124 106)(67 125 107)(68 126 108)(69 127 109)(70 128 110)(71 121 111)(72 122 112)(73 131 84)(74 132 85)(75 133 86)(76 134 87)(77 135 88)(78 136 81)(79 129 82)(80 130 83)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)
(1 38 5 34)(2 37 6 33)(3 36 7 40)(4 35 8 39)(9 74 13 78)(10 73 14 77)(11 80 15 76)(12 79 16 75)(17 119 21 115)(18 118 22 114)(19 117 23 113)(20 116 24 120)(25 102 29 98)(26 101 30 97)(27 100 31 104)(28 99 32 103)(41 86 45 82)(42 85 46 81)(43 84 47 88)(44 83 48 87)(49 106 53 110)(50 105 54 109)(51 112 55 108)(52 111 56 107)(57 134 61 130)(58 133 62 129)(59 132 63 136)(60 131 64 135)(65 92 69 96)(66 91 70 95)(67 90 71 94)(68 89 72 93)(121 144 125 140)(122 143 126 139)(123 142 127 138)(124 141 128 137)

G:=sub<Sym(144)| (1,121,82)(2,122,83)(3,123,84)(4,124,85)(5,125,86)(6,126,87)(7,127,88)(8,128,81)(9,49,28)(10,50,29)(11,51,30)(12,52,31)(13,53,32)(14,54,25)(15,55,26)(16,56,27)(17,59,95)(18,60,96)(19,61,89)(20,62,90)(21,63,91)(22,64,92)(23,57,93)(24,58,94)(33,44,139)(34,45,140)(35,46,141)(36,47,142)(37,48,143)(38,41,144)(39,42,137)(40,43,138)(65,131,118)(66,132,119)(67,133,120)(68,134,113)(69,135,114)(70,136,115)(71,129,116)(72,130,117)(73,98,105)(74,99,106)(75,100,107)(76,101,108)(77,102,109)(78,103,110)(79,104,111)(80,97,112), (1,104,116)(2,97,117)(3,98,118)(4,99,119)(5,100,120)(6,101,113)(7,102,114)(8,103,115)(9,42,59)(10,43,60)(11,44,61)(12,45,62)(13,46,63)(14,47,64)(15,48,57)(16,41,58)(17,28,39)(18,29,40)(19,30,33)(20,31,34)(21,32,35)(22,25,36)(23,26,37)(24,27,38)(49,137,95)(50,138,96)(51,139,89)(52,140,90)(53,141,91)(54,142,92)(55,143,93)(56,144,94)(65,123,105)(66,124,106)(67,125,107)(68,126,108)(69,127,109)(70,128,110)(71,121,111)(72,122,112)(73,131,84)(74,132,85)(75,133,86)(76,134,87)(77,135,88)(78,136,81)(79,129,82)(80,130,83), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (1,38,5,34)(2,37,6,33)(3,36,7,40)(4,35,8,39)(9,74,13,78)(10,73,14,77)(11,80,15,76)(12,79,16,75)(17,119,21,115)(18,118,22,114)(19,117,23,113)(20,116,24,120)(25,102,29,98)(26,101,30,97)(27,100,31,104)(28,99,32,103)(41,86,45,82)(42,85,46,81)(43,84,47,88)(44,83,48,87)(49,106,53,110)(50,105,54,109)(51,112,55,108)(52,111,56,107)(57,134,61,130)(58,133,62,129)(59,132,63,136)(60,131,64,135)(65,92,69,96)(66,91,70,95)(67,90,71,94)(68,89,72,93)(121,144,125,140)(122,143,126,139)(123,142,127,138)(124,141,128,137)>;

G:=Group( (1,121,82)(2,122,83)(3,123,84)(4,124,85)(5,125,86)(6,126,87)(7,127,88)(8,128,81)(9,49,28)(10,50,29)(11,51,30)(12,52,31)(13,53,32)(14,54,25)(15,55,26)(16,56,27)(17,59,95)(18,60,96)(19,61,89)(20,62,90)(21,63,91)(22,64,92)(23,57,93)(24,58,94)(33,44,139)(34,45,140)(35,46,141)(36,47,142)(37,48,143)(38,41,144)(39,42,137)(40,43,138)(65,131,118)(66,132,119)(67,133,120)(68,134,113)(69,135,114)(70,136,115)(71,129,116)(72,130,117)(73,98,105)(74,99,106)(75,100,107)(76,101,108)(77,102,109)(78,103,110)(79,104,111)(80,97,112), (1,104,116)(2,97,117)(3,98,118)(4,99,119)(5,100,120)(6,101,113)(7,102,114)(8,103,115)(9,42,59)(10,43,60)(11,44,61)(12,45,62)(13,46,63)(14,47,64)(15,48,57)(16,41,58)(17,28,39)(18,29,40)(19,30,33)(20,31,34)(21,32,35)(22,25,36)(23,26,37)(24,27,38)(49,137,95)(50,138,96)(51,139,89)(52,140,90)(53,141,91)(54,142,92)(55,143,93)(56,144,94)(65,123,105)(66,124,106)(67,125,107)(68,126,108)(69,127,109)(70,128,110)(71,121,111)(72,122,112)(73,131,84)(74,132,85)(75,133,86)(76,134,87)(77,135,88)(78,136,81)(79,129,82)(80,130,83), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (1,38,5,34)(2,37,6,33)(3,36,7,40)(4,35,8,39)(9,74,13,78)(10,73,14,77)(11,80,15,76)(12,79,16,75)(17,119,21,115)(18,118,22,114)(19,117,23,113)(20,116,24,120)(25,102,29,98)(26,101,30,97)(27,100,31,104)(28,99,32,103)(41,86,45,82)(42,85,46,81)(43,84,47,88)(44,83,48,87)(49,106,53,110)(50,105,54,109)(51,112,55,108)(52,111,56,107)(57,134,61,130)(58,133,62,129)(59,132,63,136)(60,131,64,135)(65,92,69,96)(66,91,70,95)(67,90,71,94)(68,89,72,93)(121,144,125,140)(122,143,126,139)(123,142,127,138)(124,141,128,137) );

G=PermutationGroup([[(1,121,82),(2,122,83),(3,123,84),(4,124,85),(5,125,86),(6,126,87),(7,127,88),(8,128,81),(9,49,28),(10,50,29),(11,51,30),(12,52,31),(13,53,32),(14,54,25),(15,55,26),(16,56,27),(17,59,95),(18,60,96),(19,61,89),(20,62,90),(21,63,91),(22,64,92),(23,57,93),(24,58,94),(33,44,139),(34,45,140),(35,46,141),(36,47,142),(37,48,143),(38,41,144),(39,42,137),(40,43,138),(65,131,118),(66,132,119),(67,133,120),(68,134,113),(69,135,114),(70,136,115),(71,129,116),(72,130,117),(73,98,105),(74,99,106),(75,100,107),(76,101,108),(77,102,109),(78,103,110),(79,104,111),(80,97,112)], [(1,104,116),(2,97,117),(3,98,118),(4,99,119),(5,100,120),(6,101,113),(7,102,114),(8,103,115),(9,42,59),(10,43,60),(11,44,61),(12,45,62),(13,46,63),(14,47,64),(15,48,57),(16,41,58),(17,28,39),(18,29,40),(19,30,33),(20,31,34),(21,32,35),(22,25,36),(23,26,37),(24,27,38),(49,137,95),(50,138,96),(51,139,89),(52,140,90),(53,141,91),(54,142,92),(55,143,93),(56,144,94),(65,123,105),(66,124,106),(67,125,107),(68,126,108),(69,127,109),(70,128,110),(71,121,111),(72,122,112),(73,131,84),(74,132,85),(75,133,86),(76,134,87),(77,135,88),(78,136,81),(79,129,82),(80,130,83)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144)], [(1,38,5,34),(2,37,6,33),(3,36,7,40),(4,35,8,39),(9,74,13,78),(10,73,14,77),(11,80,15,76),(12,79,16,75),(17,119,21,115),(18,118,22,114),(19,117,23,113),(20,116,24,120),(25,102,29,98),(26,101,30,97),(27,100,31,104),(28,99,32,103),(41,86,45,82),(42,85,46,81),(43,84,47,88),(44,83,48,87),(49,106,53,110),(50,105,54,109),(51,112,55,108),(52,111,56,107),(57,134,61,130),(58,133,62,129),(59,132,63,136),(60,131,64,135),(65,92,69,96),(66,91,70,95),(67,90,71,94),(68,89,72,93),(121,144,125,140),(122,143,126,139),(123,142,127,138),(124,141,128,137)]])

C325Q16 is a maximal subgroup of
C323SD32  C323Q32  C6.D24  C325Q32  C328SD32  C327Q32  S3×Dic12  C24.3D6  D247S3  C24.78D6  C24.5D6  C24.26D6  C24.32D6  Q16×C3⋊S3  He34Q16  C24.D9  C338Q16  C3312Q16
C325Q16 is a maximal quotient of
C6.4Dic12  C241Dic3  C24.D9  He35Q16  C338Q16  C3312Q16

39 conjugacy classes

class 1  2 3A3B3C3D4A4B4C6A6B6C6D8A8B12A···12H24A···24P
order12333344466668812···1224···24
size112222236362222222···22···2

39 irreducible representations

dim111222222
type++++++-+-
imageC1C2C2S3D4D6Q16D12Dic12
kernelC325Q16C3×C24C324Q8C24C3×C6C12C32C6C3
# reps1124142816

Matrix representation of C325Q16 in GL4(𝔽73) generated by

727200
1000
0010
0001
,
0100
727200
0001
007272
,
665900
14700
00235
006818
,
506800
182300
00220
001871
G:=sub<GL(4,GF(73))| [72,1,0,0,72,0,0,0,0,0,1,0,0,0,0,1],[0,72,0,0,1,72,0,0,0,0,0,72,0,0,1,72],[66,14,0,0,59,7,0,0,0,0,23,68,0,0,5,18],[50,18,0,0,68,23,0,0,0,0,2,18,0,0,20,71] >;

C325Q16 in GAP, Magma, Sage, TeX

C_3^2\rtimes_5Q_{16}
% in TeX

G:=Group("C3^2:5Q16");
// GroupNames label

G:=SmallGroup(144,89);
// by ID

G=gap.SmallGroup(144,89);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-3,48,73,79,218,50,964,3461]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^8=1,d^2=c^4,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽